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1 Introduction

Image captioning straddles the intersection of Natural Lan-
guage Processing (NLP) and Computer Vision (CV). Gener-
ating a caption given an image, especially in zero-shot cases,
is a difficult task due to the need for semantic alignment be-
tween two very different spaces and the inherent subjectivity
in what is of importance in an image.

(a) A woman pushes a fruit cart
down a narrow street.

(b) An urban walkway lined
with motorcycles and bicycles.

Figure 1: Two valid interpretations of the same image.

Show and Tell [12] was the first model architecture adapt
the encoder-decoder framework for image captioning, using a
Convolutional Neural Network (CNN) as the encoder to pro-
duce image embeddings, and then a LSTM to sequentially de-
code a caption generation. Building on this, Show Attend
Tell [13], developed by Yoshua Bengio’s lab in 2015, intro-
duced an attention mechanism that allows the decoder to dy-
namically focus on different image regions during caption gen-
eration. By computing a context vector zt at each timestep
and feeding it into the LSTM, the model helps overcome the
information bottleneck inherent to traditional RNNs. In this
work, we reimplement Show Attend Tell to evaluate its ef-
fectiveness and better understand the role of visual attention
in image captioning.

2 Chosen Result

We reproduce the METEOR scores for both soft and hard at-
tention models on Flickr8k from the original paper [13] (Table
1). By capturing both attention variants, we evaluate the core
contributions of the paper and contrast their approaches. We
focus on METEOR because it has been shown to provide a
more semantically faithful evaluation than BLEU, accounting
for stemming, synonymy, and paraphrasing [1, 5]. Given our
compute constraints, Flickr8k [3] was the optimal dataset for
our experiments. Our goal is to assess the robustness and
reproducibility of these techniques under modern training &
architectural regimes.

Model B-1 B-2 B-3 B-4 METEOR

Soft-Attention 67 44.8 29.9 19.5 18.93
Hard-Attention 67 45.7 31.4 21.3 20.30

Table 1: Performance comparison of attention mechanisms on
Flickr8k in the original paper for BLEU1-4 & METEOR. [13]

3 Methodology

3.1 Encoder-Decoder Model

The paper uses an encoder-decoder framework with a convo-
lutional neural network (CNN) to encode the input image and
a long short-term memory (LSTM) network to decode the re-
sulting features into a caption. The authors use VGGNet-19
[10] as the encoder, which produces a 14×14×512 feature map
from the input image. We use the more modern RESNET-50
[6], pretrained on ImageNet [9] with the final classification
layers removed and only the convolutional layers up to block
C5 kept, to obtain the latent 14× 14× 512 space. This yields
{a1, . . . , a196} ⊆ R512 vectors which we call the annotations
of the image. Each of these represent localized visual infor-
mation and are used to construct the contextual vector ẑt at
each timestep.

At each decoding step, the LSTM gates are computed from
a learned transformation of the previous word embedding,
the previous hidden state, and most notably, the context
vector from the attention mechanism. We use learned
initial states using the multi-layer-perceptrons (MLPs),
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A deep output layer [6] is used to compute the output
word probability given the LSTM state, the context vector,
and the previous word at each timestep t.

3.2 Attention

Attention enables the decoder to dynamically focus on dif-
ferent parts of the image when generating each token in the
caption. At time step t, energy scores are learned via an MLP,
eti = fatt(ai,ht−1). We then use softmax to obtain a distri-
bution {αti}196i=1 over our compressed 14× 14× 512 encoding
space, where αti is the associated probability with annota-
tion ai at timestep t. In particular, we have the distribution
p(st | a) where st denotes the attention location. We then
have two approaches for computing the context vector ẑt.

3.2.1 Soft Attention

Soft attention is a deterministic attention mechanism where
the context vector ẑt is computed as a weighted sum over all
annotation vectors ai. It is the expectation over the distri-
bution p(st | a), so the context is zt =

∑L
i=1 αtiai. This al-

lows all localized visual features to influence the context with
learned weights. Note that all operations are differentiable;
therefore, soft attention can be trained via backpropagation.
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3.2.2 Doubly Stochastic Attention

As an extension to Soft Attention, Doubly Stochastic At-
tention adds a regularizer to the training objective: Ld =
− log(P (y | x)) + λ

∑L
i (1 −

∑C
i αti)

2, where λ is a tuneable
parameter (we use λ = 0.2). Over each of the L = 196 loca-

tions, we regularize so that
∑C

i αti ≈ 1. In other words, for
each location i, we regularize so that this particular location
is attended to over all timesteps t, so one location is not only
seen at a singular timestep. The authors note this improves
performance [13].

3.2.3 Hard Attention

Hard attention is a stochastic attention mechanism in which,
at each time step t, the model samples a single annotation
vector to focus on, denoted st,i. So, ẑt =

∑
st,iai (and only

one such st,i is nonzero).

3.3 Data

We trained and evaluated our model on the Flickr8k dataset
[3]. This dataset consists of 8,000 images, each annotated
with five human-written captions. We used the standard
train/validation/test split provided by the dataset. Each test
caption is evaluated against the five human reference captions
using primarily the METEOR metric, though the BLEU-1
score is included for comparison [1, 5].

3.4 Training

Soft and hard attention require different training regimes due
to the stochasticity in hard attention. We optimize soft atten-
tion using binary cross-entropy loss and standard backprop-
agation. Hard attention is not differentiable (due to stochas-
ticity), and the paper did not specify their training algorithm
used. We opted to use the REINFORCE algorithm with an
exponential moving average baseline estimate and entropy
term by setting the reward to be the negative per-sample
cross-entropy loss. In particular, we roll out a trajectory s̃n

of sampled locations from the distribution p(st | a), keeping
track of log probabilities and rewards, and compute the policy
gradient estimate with Montecarlo sampling.

Because running the decoder requires time proportional to
the longest length of a caption, we also added length-based
sampling, where we sample a length and obtain a mini-batch
of size 64 of training examples. This improved convergence
speeds by allowing smaller length training examples to not be
bottlenecked.

We faced characteristic challenges of REINFORCE in the
hard attention regime: unstable gradients, high variance, and
sensitivity to baseline tuning. Without careful calibration,
the model sometimes collapsed to generic or repetitive out-
puts, a phenomenon echoed in the original paper’s discussion.
To mitigate this, our heuristics included several stabilization
techniques, such as an exponential moving average baseline,
entropy regularization, and label smoothing, as summarized
in Table 2.

Soft Attention Details

Optimizer Adam (replace RMSProp) [4]
Encoder backbone ResNet50 (replace VGG19) [2]
Teacher forcing Linear decay from 1.0 → 0.5

Hard Attention Details

Fine-tuning 20 epochs after soft attention
EMA baseline αt−1 + (1− α)bt, α = 0.95

Entropy bonus λe
∂H[s̃n]
∂W

, λe = 0.5
CE smoothing Label smoothing w/ ϵ = 0.1 [11]

Length normalization lp(Y ) =
(

5+|Y |
6

)0.5

Temperature annealing Softmax temperature 1.0 → 0.5
linearly

Teacher forcing Same as original
Dropout Reduced to 0.2
Beam search Beam width increased to 8

Table 2: Training and inference modifications for soft and
hard attention regimes.

We trained our final soft-attention model for 50 epochs, and
found it was relatively stable to train. Because hard attention
was optimized with REINFORCE, we anticipated weak train-
ing signals and instabilities during optimization. As such, we
decided to implement hard attention by fine-tuning our soft
attention model with the REINFORCE objective for an ad-
ditional 20 epochs.

4 Results & Analysis

We report our METEOR & BLEU-1 scores on the Flickr8k
test set for both soft and hard attention mechanisms, and
compare them to paper’s results, in Table 3.

Metric Xu et al. Reproduced

Soft Attention

BLEU-1 67.0 45.9

METEOR 18.93 18.96

Hard Attention

BLEU-1 67.0 43.2

METEOR 20.30 20.75

Table 3: Flickr8k BLEU-1 and METEOR scores for soft and
hard attention models.

Notably, despite not having access to the original pa-
per’s hyperparameters and optimization details, our models
achieved superior METEOR scores to those reported on the
Flickr8k set, with a +0.03 improvement for soft attention and
a +0.45 improvement for hard attention. Overall, our results
affirm the utility of visual attention in image captioning. Our
models not only matched but exceeded reported METEOR
performance, illustrating the robustness and replicability
of the original approach.

While reproducing BLEU-1 scores was not in our scope,
we include them for completeness. BLEU-1 scores are lower
across both reimplementations, and this is likely due to differ-
ences in tokenization. Notoriously,BLEU is sensitive to exact
n-gram overlaps, making consistent tokenization a major fac-
tor in being able to fairly compare BLEU scores [5]. However,
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because the caption tokenization scheme was not published
in the original paper, BLEU scores suffer, which further vali-
dates our successful above-paper reproduction of the more ex-
pressive METEOR metric [1, 5]. Because the paper omitted
several training details, including hyperparameter settings,
number of epochs, and data pre-processing information, we
conducted our own experiments and made heuristic decisions.
Moreover, our training was conducted on a single GPU with
runtime constraints, which limited batch size and the number
of epochs.

An important implication of this paper is the inter-
pretability of results, not only for correct but also incor-
rect examples. For example, we can understand “where” the
model is looking when generating word t using both atten-
tion variants. By using our encoded annotation vectors, we
can visualize attention by generating a heat map using the
outputted distributions:

(a) Soft Attention when gener-
ating ”boy” distributes the at-
tention about the boy’s figure
and ignores the background.

(b) Hard Attention when gen-
erating ”pants” sharply attends
to the boy’s pants.

Figure 2: Visual comparison of soft vs hard attention mecha-
nisms.

5 Reflections

Implementing both attention mechanisms allowed us to empi-
rally visualize the performance boost of techniques that com-
bat bottlenecking in RNNs. While training the soft attention
mechanism was relatively simple, we saw how difficult is is to
train hard attention with REINFORCE due to the variability
and intense sensitivity to hyperparameter configurations.

Future extensions of our work would include evaluating
transformer-based decoding approaches, since these architec-
tures have since dominated state-of-the-art results in VLM
tasks and show promising zero-shot capabilities for caption-
ing. Current research directions are improving the short-
comings of transformer models for understanding visual fea-
tures [14]. Moreover, retrieval-augmented generation (RAG)
approaches have emerged to supplement captioning abilities
[7, 8], such as a a trigger-augmented (TA) generation ap-
proach to enhance visual alignment [15].

Our code, models, and results are accessible on GitHub.
Since our approach outperformed the paper results, we hope
that by making our methods open-source we are able to stim-
ulate more transparent reproductions and evaluations of the
original work.
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